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TECHWICAL NOTE 3077

THE EFFECT OF DYNAMIC LOADING ON THE STRENGTH
OF AN INELASTIC COLUMN

By Williem A. Brooks, Jr., end Thomas W. Wilder, III
SUMMARY

The maximum loads of ildealized inelastic H-section columns whose
pinned ends gpproach each other at a constant rate are presented. The
solutions indicate that as the rate of end displacement becomes smaller
the dynamic buckling solutions approach the static solution as a lower
limit. The effects of inertias forces are apparently negligible at rates
of end displacement comparable to those normally used in static columm
testes. For all rates of end displacement investigated the static maxi-

mm load may be employed as a conservative estimate of the maxcimum
column load.

INTRODUCTION

Only in recent years has the solution to the problem of the stat-
ically loaded inelastic column been sufficiently developed to provide
ansvers ag satlsfactory as those predicted from elastic-column theory.
Shanley (ref. 1) gave new life to inelastic-column theory by indicating
that a column may start to bend at the tangent-modulus load and that
the maxdmm load of & straight inelastic colum is always less than the
reduced-modulus load but greater than the tangent-modulus load. By
extending Shanley's theory, Duberg and Wilder (ref. 2) found that the
maximum load could be determined more definitely and that it depended,
for a large part, on the shape of the stress~strain curve. It was later
shown (ref. 3) that the maximm load of an initially curved inelastic
column may be less than the tangent-modulus load, and that initial out-
of -straightness has a greater effect on the maximum load of an inelastic
colum than on that of an elastic column.

Whereas the behavior of columms subjected to static loading condi-
tions 1is camparatively well known, investigations involving the behavior
of dynamically loaded columns have been limited in scope and number in
splte of the fact that most structurel loads, in particular the most
significant aircraft structural loads, are dynemic. Hoff and his asso-
ciates (refs. 4 and 5) treated the case of an elastic column whose ends
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approach each other at a constant rate and showed that for rates of end
displacement comparable to those obtained in static-testing machines
there is good agreement between the maximum load end the Euler load. It
was also shown that at higher rates the maximum load becomes greater than
the Euler load. The inelastic column was analyzed in much the same man-
ner by Chawla (ref. 6), who found that for relatively slow rates of end
displacement the maximum column load was much smaller than the tangent-
modulus load. Chewla's results appeared low; therefore, a static solu-
tion was made by the authors which revealed that the maximum load obtained
in reference 6 was not only less than the tangent-modulus load but also
less than the static maximum load. If this surprising result is correct,
the consequences are indeed serlous because its indication 1s that a
static analysis could not be used to obtain a conservative estimate of
the maximum load.

The present paper gives the results of an analysis which was made
to ascertain whether some particular combination of the factors which
influence the strength of inelastic columns would ceuse the strength of
the column to be less when rapidly loaded than when slowly loaded. The
only manner of loading which is considered is that which causes the
pinned ends of the column to be axially displaced with a constant veloc-
ity. The factors considered most important for the study are the ini-
tial out-of-straightness, the shape of the stress-strain curve, the
slenderness ratio of the column, and the rate at which the ends of the
column are displaced. The parameters which describe these factors are
varied to yield numerous solutions which show the influence of each
factor on the strength of the column.

The column used in the anslysis 1is the idealized H-section column.
The analytical expression used for the stress-strain curves is that
proposed by Ramberg and Osgood (ref. 7) and is assumed to be unaffected
by the rate of loading.

SYMBOLS
A cross-sectional area of column
b column thickness (see fig. 1)
d total lateral deflection of column at midheight after
loading
do initial lateral deflection of column at midheight

before loading
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€1

€E

dimensionless initial lateral deflection of column at
midheight before loading, 2d0/b

Young's modulus

secant modulus

dimensionless total lateral deflection of column at
midheight after loading, 24/b

column length
mass per unit volume of column material

Ramberg-0Osgood stress-strain-curve shspe parasmeter
(see ref. T)

lateral inertia force per unit length

time

velocity at which the ends of the column are displaced
longitudinal distance measured from end of column
total lateral deflection of column

initial lateral deflection of column

strain

elagtic strain corresponding to stress oy

elastic strain corresponding to Euler stress, ﬂzpa/L2
dummy verilable of integration

radius of gyration, b/2

stress

0.7E secant yield stress

cross-sectional stress corresponding to tangent-
modulus load
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Subscripts:
L

R

max

rev

NACA TN 3077

average cross-sectional stress of column

dimensionless time parameter, vt/Lel

first naturel circular frequency in transverse bending

2
dynamic buckling index, <Y7;; >
E

left (concave) flange
right (convex) flange
maxinum

corresponding to the strain at which reversal occurs

Dots indicate differentiation with respect to time +; primes
indicate differentiation with respect to dimensionless time 7.

THEORY

The idealized pin-ended columm (fig. 1) treated in the present
paper consists of two thin flanges of equal area separated by a web of

infinite shear stiffness and of negligible ares.

Inasmuch as the veloc-

ity of compression-wave propagation is large compared with both the rate
of end displacement and the rate of the resulting lateral deflection, a
state of uniform average compression is assumed to exist along the length
of the column.

The initial conditions at time zero are

Y = Vo
=0 (1)
¥=0

If D'Alembert's principle is applied to the portion of the column
shown in figure 1, the following equilibrium equation can be obtained
by summing the moments about the pin:
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. X
GL%@-)—UR%(§+y)+mAfO Jt a4t = 0 (2)

This equation relates the flange stresses o and op to the lateral

deflection y. Another relation between the stresses and lateral deflec-
tion can be obtained through the use of the stress-strain relstion of

the material in conjunction with the satisfaction of compatibility between
the flange strains and the lateral deflection.

In the present paper the stress-straln curve 1s assumed to be rep-
resented by the Ramberg-Osgood equation:

d .3 [{c\*
€1=q+7(Q) (3)

This equation is used when the material is loading. Unloading (strain

reversal) which may occur in the convex flange is assumed to teke place
elastlically; thus

n
€£=01+_$_<9_1;e_v> (%)

where oOpey 18 the stress corresponding to the strain at which reversal
occurs.

Satisfaction of compatibility requires that

N
2
a -
LT
. - (5)
€p = € + 2 il Ot
RT 572 g2
</

where, by virtue of the assumption of uniform aversge compression, the
average strain € is related to the end displacement as follows:
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L€=vt+%foL(f—ii9>edx-éj;L(%>2dx (6)

By assuming the initial out-of-straightness to be

Yo = dp sin = (7)
and the total deflection to be
¥y = d sin %% (8)

and by satisfying equilibrium only at midheight (x = L/2), equation (2)
becomes

%_(%_d)_fﬁ(h+d>+ﬁma=o (9)

When equations (6), (7), and (8) are used, the strains (5) become

f (10)
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Employment of the relations

EE = ﬁ f_
b L
=28
f=2 5
ad
=2 -9
© b
reduces equations (9) and (10) to
Fox2 EL(f - 1) + op(f + 17_\ (11)
21°m

and

~

_ vt 1 2 2
e, = T - —»eE(f -e ) + eg(f - e)

R

Lo fel® - ) - eple -e)

The differential equation (11) can be made dimensionless by using
the reletion

gy = Ee, (13)
and the parameter
_ vt
=T (1%)
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A velue of T equal to unity corresponds to an end displacement suf-
ficient to produce a strain of € in a straight column. Equation (11)

thus becomes

o _ a2 B [og °R
A e b i EBCEENER Y CES (15)

Equations (12) are made dimensionless by dividing both sides of
the equations by ¢; and using equation (14):

e_L = T - _l E—E 2 - 2 + E—E f -— e 168
€] )| €] @ € ) €J( ) ( )
R _ 1 €E (-2 2 B

== T = = .E_(f e ) - .e_(f - e) (l6b)

3
ey o (a7)
S
€1
where, by definition,
n:( w )2 (18)
v/LeE

In the expression for Q, the quantity w i1is the first natural circular
frequency in transverse bending. The differential equation (15) may now
be rewritten:

no 0 L %R
£ 2(eE/el)3 l;l(f 1) + Ul(f + 1}} (19)
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Simultaneous solution of equations (3) (or (3) and (%)), (16),
and (19) yields the desired latersl deflection.

An additional equation which proves useful in a numerical solution
is obtained by using the relation

E
Ul E €l

and combining equations (16) and (19) to produce

ES € €
no_ Q LT _l_E, 2 - 2 _E_: - -
: 2(egfer)® | * [ k ‘=‘1<f ) + o eE\ (-2
SR[ _ 1? €1 =) I E_Pj(f - e;J (£ + 1) (a1)

A numerical solution of the problem is described in detail in the
appendix.

RESULTS AND DISCUSSION

The cases for which solutions were obtained are given in table 1.
The paremeters which are varied are:

(1) The shape of the stress-strain curve, which is determined by
the value of n asslgned to the Ramberg-Osgood equation

(2) The slenderness ratio of the column, which is determined by
the value assigned to GE/el (which is, in turn, defined by the value

assigned to UT/bl)

(3) The initial out-of-straightness, which is determined from the
value of the dimensilonless parameter e

(4) The dynamic-buckling index Q, which is inversely proportionsl
to the square of the velocity et which the ends of the column approach
each other.
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An explanation of the meaning of the dynamic-buckling index Q can
be had by realizing that when a particular column is being loaded, the
end displacement will reach a value equal to eglL in a time equal to

that required for an identical unloaded column to undergo a natural

vibration of \[@/2r cycles. Therefore, Q is the parameter which can
be varied to correspond to various rates of end displacement. Table 2
indicates the approximate range of the velocities employed.

The dimensionless parameter T (eq. (14)) may be considered to be
a shortening paremeter, as the product vt i1s the amount of shortening
that occurs in time +. With the exception of figure 2, the results are
presented as plots of load against lateral deflection or shortening.

Plots of dimensionless lateral deflection against dimensionless
shortening are given in figure 2 for n =10 and e = 0.0l1. The curves
result from the dynsmic solutions, and the symbols in this figure rep-
resent points in the neighborhood of the maximum load obtalned from the
static solution. At the higher velocities (small values of Q), for a
given amount of shortening, the lateral deflection 1s considerably
smaller than that obtained from the static solution. Thus, in the
dynamic solutions, more shortening initially results from axial com-
pression than from bending, end the lateral deflections initially lag
behind those obtained from the static solution. However, as time pro-
gresses 1t is possible for the lateral deflection obtained for all rates
of end displacement to overshoot that obtained from the static solution.

For Q = 106, the lateral deflections from the dynamic solution oscillate
about those obtained from the static solution. The oscillations are so
small that 1t is difficult end impractical to show them. For all prac-

tical purposes, the curve for @ = lO6 coincides with that obtained
from the static solution, and the effects of inertia forces are negligible.

Figure 3 presents the variation of load with lateral deflection for
the cases given in figure 2. The symbols in this figure and subsequent
ones represent points in the neighborhood of the maximum load obtalned
from the static solutions given in reference 3. It is to be noted that

maximm loads are not indicated for Q =1, 10, end 102, TFor these
cases the solutions were terminated when strains became approximately
equal to 2 percent. Excessive deformation rather than meximum loed is
believed to be the governing criterion for cases in this range of
velocities.

In figure 4, load is plotted against shortening. The material
stress-strain curve is also shown and, as would be expected, serves
as the upper limit. However, it is important to realize that at the
higher velocities the material stress-strain curve may be altered. In
the present paper, the rate of end displacement is assumed to have no
influence on the shape of the stress-strain curve.
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In order to investigate the effect of initial out-of-straightness,
a group of solutions was made for g given rate of end displacement and
various values of initial curvature. The solid curves of figures 5
and 6 are these solutions and the dashed curves are the corresponding
static solutions. As would be expected, the largest values of load
overshoot are agsocilated with the smallest initial out-of-straightness -
8, sltuation similar to that which exists for static loading; namely, the
smallest eccentricities permit the column to bear the largest loads.
However, 1t is apparent that initial curvatures, particularly the small
out-of-stralghtness, have more effect on the maximum load for dynamic
loading than for static loading. (The static maximum load for e = O
is practically coincident with that for e = 0.00001.)

Figure 7 shows the results of solutions for columns of different
lengths and of a given materisl, initial out-of-straightness, and rate
of end displacement. For comparison purposes the tangent-modulus load
and static meximm load are shown. The statlic curves were obtained
from reference 3. A static curve 1is not given for UT/oi. &u‘ P@/Pl)

equal to 1.1 because, as a result of computational difficulties, this
case was not considered in reference 3. From these plots it is evident
that the tangent-modulus load may in some instances, depending on the
column proportions, material, and initial out-of-straightness, be an
unconservetive approximation to the maximum dynamic load. For the case
shown, the tangent-modulus load is a better approximation for the dynamic
meximum load than for the static maximum load.

Figures 8 and 9 show solutions for a different material (n = 2).
A comparison of these figures with figures 3 and 4 reveals that, for a
given rate of end displacement, the percentage increase in maximum load
above that predicted by the static analysis is greater for the material
having a more rapldly curving stress-strain curve (n = 10). The load

overshoot for § = 102 is, in the given case, approximately 32 percent.
Considering the fact that the initial out-of-gtraightness is rather
large, it is obviocus that for n = 2 the dynamic meximum loads for

the smaller values of initial out-of-straightness may be considerably
larger than the static maximum load. However, the static maximum load
1s still on the conservative side of the dynamlic meximum load.

CONCLUDING REMARKS

The solutions presented indicete that as the rate of end displace-
ment becomeg smeller the dynamic buckling solutlons approach the static
solution as a lower limit. The upper limit for dynamic buckling is, as
would be expected, the material stress-strain curve, which may be altered
by the rate of loading. The effects of lnertia forces are apparently
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negligible at rates of end displacement comparable to those normally
used in static column tests. From the results obtained it can be con-
cluded that the static maximum load mgy be employed as & conservative
estimate of the maximum load of a column, regardless of the rate of
end displacement.

Langley Aeronautical Laborgtory,
National Advisory Committee for Aeronautics,
Langley Field, Va., December 29, 1953.
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APPENDTX
NUMERTCAT. SOLUTION

The nonlineasr nature of the differential equation of lateral column
motion mekes it necessary to resort to a numerical solution. The solu-
tion i1s facilitated by the fact that the equation of motion does not
contain the velocity of lateral deflection; only the deflection and
accelergtion are involved. By approximating the acceleration with an
interpolation formule and Integrating twice, a recursion formula for
forward integration can be obtained. Once the type of integrating for-
mulae has been decided upon, it is necessary only to obtain the required
initial values and to choose the interval size. In the sections that
follow, each of the aforementioned items will be discussed in detail.

Recursion Formulas for Forward Integration

When f 1s known, the strains €; and e can be found by sub-

stituting f and the corresponding velue of T into equations (16).
The stresses oy, and oR can then be determined by using the stress-

strein relation (3) or relations (3) and (4). If the stresses that exist
at f are known, f" can be computed from equation (19). Equation (19)
may therefore be written in functional notation as

" = g(f,T) (A1)

and can be integrated by use of the following recursion formula (ref. 8):
fpy1 = 2fp - fp3 + (a7)2 (f"r * 55 A?—f"r_l) (a2)

However, as the following disgonal-difference table indicates,
A?f"r_l is a function of f£", , and is therefore indeterminate until

£".41; which is, in turn, dependent on fn.,.; (eq. (Al)), hes been
found.
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DIAGONAL-DIFFERENCE TABLE

T £ £" AF™ nep

(r - 2)ar frn f"r_2
Af"r—2

(r ~ 1)ar fr1 Y1 T A
Af"r--l

(r)ar fr . A?f"r_l

Af"r

(r + 1)AT fr+l f"r+l

An approximate solution (ref. 8) which does not require A?f"r_l
is the following:

Trpg =200 - £ g + (ar) G"r + Il'p: Aaf"r-e) (43)

With the approximate value of f,,; glven by equation (A3), an approxi-
mate velue of ATE". ;, may be found. Equation (A2) is then used to
correct and check the approximate value of f,.,; found by equation (43).

The suggestion in reference 8 that the intervel Ar be chosen suffi-
cently small so that there is little change in the values of frra

obtained from these two equations is followed in the present paper.

Initial Values

As bending of the column progresses, the strain in the convex flange
eventually reaches a maximm and reverses. When reversal occurs, it is
necessary to change the stress-strain relation for the convex flange
which unloads elastically. Changling the stress-strain relation alters
the form of g(f,7); thus, the problem may be considered as consisting
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of two parts, (1) prereversal and (2) postreversal, both of which require
three initial values in order to start the recurrence process.

Prereversal.- The required initial values for the prereversal phase
can be determined by expanding the dimensionless lateral deflection in a
Taylor's series gbout T = 0, subject to the assumed initial condi-
tions (1). The ratios of the moduli Egy[E and ESR/E which appear

in equation (21) are implicit functions of f and therefore differen-
tiation of the equation is impractical. However, during the initiel.
stage of loading the values of these ratios often mgy be assumed to be
constent and equal to unity. Such an assumption permits differentiation
of equetion (21) in order that the higher-order derivatives involved in
the Taylor's series may be found. The following relation obtained from
the series expansion and the agsumed initiel conditions provides the
required initisl velues of f:

eQ (n Arr)5 _e2(2 + e2) (n Ar)D
(eE/el) 5 3. 2 (eE/el) > -

fh=¢e+

oo o. (k)

For those stress-strain curves which have & small, or no, elastic
region (for exemple, n = 2 in the Ramberg-Osgood stress-strain curve
representation), the assumption that the ratios of the moduli are unity
1s, of course, not valid. Nevertheless, the initial values of f
obtained from equation (Ak) may be used as the first trial values for
an iteration procedure. An iterstion expression can be derived by
assuming that s second-degree parabola 1s sufficlently accurate to
describe f£" in the neighborhood of T = O. Integration of the parab-
ola yields the following expression for f in terms of f":

£y = (n - 2)f"5 + 2(4 - n)£"y +-@L- 6 + %%)f"é](ﬂﬁ)e + nf'y AT + £

ol

(n =0, 1, 2) (A5)

The triael values of f obtained fram the serles expansion are sub-
stituted into equation (Al) to find the corresponding trial values
of f", which are then substituted into equation (A5) to yleld better
values of f. The procedure ig repeated until the values of f converge.

Postréversal.- As was previously mentioned, the integration process
must be started anew at the point where strain reversal occurs. The
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values of f, f', and f" at 7., must be determined for they are

used as initisl conditions for the new integration problem. Strain
reversal will generally occur at some value of T which is not a mul-
tiple of Ar, and, therefore, the point at which reversal occurs must
be located numericelly or graphically. The required initial values

of f and f" are found by the following procedure:

1. Find (eR /el) and Tr_ev numericaelly or graphicelly from

plots of eR/el against T.

2. Solve for f,., Dy using equation (16b).
3. By using the known value of f,..., solve equation (Al) for f£".oy-

Inasmuch as the velocity f£!' of lateral deflection does not appear
in the solution, it is more difficult to find f', . An approximation

to f'rev can be obtained as follows:
T=T
rev
ey = T'a +L/q £'ar (86)
T

where & is some value of T 1in the prereversel phase of the problem.
By assuming that

! m.A_f
£~ 2 (AT)

equation (A6) can be written as

T=T

(AT)E' oy = (Af)g + OT f TV prar (a8)

T=8,

The first differences Af which are used in the solution are plotted
at the midpoints of the intervals. The quantity (&7)f'rey 15 evaluated

by numerically integrating the f£" values between the last midinter-
val point before reversal (T = a) and Trey? and adding the result to

the value of Af at that last midinterval point. In the present case,
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the error involved in the first-order approximation, equation (A7), is
small, and the use of the approximstion is therefore justified. The
errors in the term (Ar)f',.e, and the values of f calculated from

equation (A5) are, of course, much smaller than the error in equation (AT).

In addition to the initial conditions, two additional sets of £
and f" are required to restart the integration. These are obtained
by using equation (A5) and the associated iteration procedure. The
first trial values in this case are obtained by interpolating the pre-
reversal solution, which was extended e few increments in T beyond
the point at which reversal occurred.

Intervel of Argument

In the present paper the interval Ar has been selected to pro-
vide & minimm of 10 intervels per period of the first natural fre-
quency in transverse bending. For the faster loading rates, in which
caseg there is only a fractlon of a period of oscillation before the
maximm load is reached or before the strains become prohibitively
large, as many as 600 intervals per period of natural frequency were
used.
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TABLE 1.- CASES OF DYNAMIC COLUMN BUCKLING

FOR WHICH SOLUTIONS WERE OBTAINED

Case n Op /9 €E/€l e Q Nk
1 10 1.0 5.2857 0.01 1 0.05
2 10 1.0 5.2857 Noil 10 .05
3 10 1.0 5.2857 .01 102 .05
L 10 1.0 5.2857 .0L 107 .01
5 10 1.0 5.2857 .01 10 .025
6 10 1.0 5.2857 .01 100 .00%
7 10 1.0 5.2857 .00001 104 .025
8 10 1.0 5.2857 .0001 10+ .025
9 10 1.0 5.2857 .001 10t .025

10 10 1.1 12.2160 .01 104 .05
11 10 .9 2.394% .01 10% .01
12 10 .8 1.2602 .01 10+ .005
13 10 7 .8211 .01 10+ .005
14 o 1.0 1.8571 .01 102 .05
15 2 1.0 1.8571 .01 107 .025
16 2 1.0 1.8571 .01 10t .01
17 2 1.0 1.8571 .01 106 .0015

19




20

TABLE 2.- RANGE OF VELOCITIES EMPLOYED

EFor velocity of compression-wave propagation
\E§.= 16,740 £t/sec and %-= 58.%]

Velocity
Q
£t /sec inié?in
1 8.1k4 5861.0
10 2.57 1855.0
102 .81 586.1
103 257 155.5
10% .081L 58.61
10° .0257 18.55
106 .00814 5.861

aMa.:d_mmn platen speed for commonly used
hydraulic testing machines is approximately

5 in./min.

NACA TN 3077
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1dealized H-sectlion colums with various initiel curvetures.
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Figure T.~ Variation of load with lateral deflectlon for dynamically
loaded, initlally curved, ldealized H-sectlion columms of various o
-

lengths.
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Figure 8.- Varistion of load with latersl deflection for initially curved
ideelirzed H-section columns with various rates of end dieplacement. n = 2,
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Figure 9.- Variation of load with shortendng for initislly curved ideslized
H-gection columms with varioua rates of end displacement. n = 2.
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